Separating the signal from the noise: how personalized recommendations can help

By Paul Kudlow, April 4, 2015

We’ve recently begun to make use of readers' click data to help personalize the recommendations they receive across the TrendMD network. The results so far are pretty exciting and offer a glimpse into how personalized recommendations can help readers discover content that’s actually interesting to them.

How TrendMD Uses Personalized Recommendations to Enhance Content Discovery

I’ll illustrate the effects of personalization with a recommended set of articles on Gut, a BMJ journal currently using the TrendMD widget.

Here is what the general audience saw approximately 3 weeks ago (widget below abstract):

In this example, the widget output was based solely on semantic relatedness. Three weeks ago, the widget’s average click-through rate (CTR) was 1.4%. (CTR = the number of times a click is made on links presented by the widget divided by the total impressions (the number of times links were seen by users)

The Impact of Collaborative Filtering and Semantic Relatedness on CTR

Fast forward to today, this is what the general audience now sees:

Screenshot showing the updated TrendMD widget output using both semantic relatedness and collaborative filtering, resulting in a CTR of 2.1%

Notice that the recommended set of articles differs from what was seen 3 weeks ago. The widget’s output is now based on both semantic relatedness and collaborative filtering (i.e. people who read A also clicked on B). The current average CTR on the generalized audience widget is 2.1%.

Increasing Reader Engagement with TrendMD’s Personalized Widget

Now, here is what I currently see:

Screenshot showing the personalized TrendMD widget output based on semantic relatedness, collaborative filtering, and past click data, with a CTR of 3.9%.

Again, notice that the recommended article here differs from what the general audience currently sees. The output of the widget here is based on a) semantic relatedness, b) collaborative filtering (i.e. people who read article A also clicked on article B), and c) personalization (based on click data collected by TrendMD — what I have clicked on in the past).

The best part is that I often read about literature related to the microbiome, and the recommendations presented by the widget reflect this. The current average CTR on the personalized audience widget (i.e. for the tens of thousands of users TrendMD has click data for) is 3.9%.

The 3 different CTRs illustrate the degree to which more data from different inputs can make recommendations more interesting and engaging to readers. Even more importantly, the larger the set of articles, the more impact collaborative filtering (i.e., people who read article A also clicked on article B) and personalization have on optimizing recommended link placements and increasing the CTR compared to semantic relatedness alone.

In addition to testing personalization, we’ve also been experimenting with adding ‘serendipity’ to the mix. We’ll be posting another set of results over the next little while. Stay tuned!

Contact

Our general response time is one business day

Your submission has been received!
Oops! Something went wrong
Button Text